

AI-Based Screen Controller with

Hand Gesture

Submitted by

Rabia Luqman (BCS-19-12)

Muneeba Shahid (BCS-19-06)

Session

2019-2023

Supervised by

Ms Sehrish Raza

INSTITUTE OF COMPUTER SCIENCE&

INFORMATION TECHNOLOGY

THE WOMEN UNIVERSITY

MULTAN,PAKISTAN

FINAL APPROVAL

This is to certify that we have read this report submitted by Rabia Luqman and Muneeba

Shahid and it is our judgment that this report is of sufficient standard to warrant its

acceptance The Women University, Multan for the degree of BS (Computer Science).

Committee:

1. External Examiner

2. Supervisor

Ms. Sehrish Raza
Lecturer at

The Women University, Multan

.

3. Director
Dr. Khadija Kanwal

Assistant Professor at

The Women University, Multan

DEDICATION

To my Loving Parents & Great Teachers

This thesis stands as a testament to the

profound impact you, my loving parents

and great teachers, have had on my life.

Your unwavering belief in me,

unwavering support, and invaluable

guidance have paved the way for my

success. I am truly fortunate to have such

remarkable individuals in my life who

have shaped me into the person I am

today.

ACKNOWLEDGMENT

All the praises, thanks and acknowledgments are for the creator of universe who gave me

strength and enabled me to undertake and execute this task. First, I offer my gratitude to my

supervisor, Ms. Sehrish Raza, who has supported me throughout my project with his

patience and knowledge whilst allowing me to work in my own way.

I would like to express my gratitude to all those who gave me the possibility to complete this

project. Thanks to all teachers of CS&IT who have guided me to the best. I would like to

thank my Family and Friends those who helped me a lot and encouraged me in every despair

moment and enabled me to face the challenges of this project. I want to express my special

thanks to Institute of CS&IT, WUM for providing working environment and all other

facilities that were needed throughout the academic session.

PROJECT BRIEF

PROJECT NAME AI-Based Screen Controller with hand gesture

ORGANIZATION NAME

 Institute of Computer Science and Technology

UNDERTAKEN BY Rabia Luqman , Muneeba Shahid

SUPERVISED BY Maam Sehrish Raza

STARTING DATE January, 2023

COMPLETION DATE

July, 2023

COMPUTER USED

Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz

2.50 GHz

6.00 GB (5.89 GB usable)

OPERATING SYSTEM 64-bit operating system, x64-based processor

Windows10 Pro

SOURCE LANGUAGE(S)

Python

DBMS USED

NO

TOOLS/PACKAGES PyCharm/ Python

ABSTRACT

This thesis presents an AI-based screen controller that utilizes computer vision and hand

gesture recognition techniques to enable hands-free interaction with a computer screen.

The system captures video input from a webcam and employs the Hand Tracking Module

to detect and track hand landmarks in real-time. By extending the index finger, users can

control the mouse cursor, leveraging the program's mapping of hand coordinates to

screen coordinates. Additionally, the system recognizes gestures such as extending both

the index and middle fingers to simulate a mouse click, closing all fingers except the

thumb for a right-click action, and extending the index and little fingers simultaneously

to capture screenshots. This AI-powered screen controller offers a user-friendly and

intuitive approach to screen navigation and interaction, providing an enhanced user

experience and eliminating the need for conventional input devices.

TABLE OF CONTENTS

Contents Page No.

Chapter1

Introduction

1.1 Background and Motivation 1

1.2 Problem Statement 1

1.3 Objectives 1

1.4 Scope of the Research 1

1.5 Thesis Organization 2

 Chapter2

Literature Review

2.1 Gesture Recogination Technique 3

2.1.1 Computer Vision-based Gesture Recoinagtion 3

2.1.2 Machine Learning-based Gesture Recognition 3

2.2 AI-based Human-Computer Interaction 3

2.3 Hand Tracking and Detection 3

2.4 Hand Gesture Recognition Systems 4

2.5 Summary 4

Chapter3

System Architecture and Methodology

3.1 System Overview 5

3.2 Block Diagram of System 6

3.3 Flow Chart of Modules of System 6

3.4 Use Case Diagram 7

3.5 Data Collection and Preprocessing 8

3.6 Hand Tracking Module 8

3.7 Gesture Recognition Module 9

3.8 AI-Based Screen Control Algorithm 10

3.8.1 Moving Mode 10

3.8.2 Stop Mode 11

3.8.3 Clicking Mode 11

3.8.4 Right-Clicking Mode 12

3.8.5 Screenshot Mode 12

3.9 Summary 13

Chapter4

System Development & Implementation

4.1 Tools and Language 14

4.1.1 Libraries and their Purposes 16

4.1.2 Python Packages table 18

4.2 Hand Tracking Module 20

4.2.1 Code Overview 20

4.2.2 Hand Detection and Tracking 20

4.2.3 Landmark Detection and Visualization 20

4.2.4 Finger Tracking and Gesture Recognition 20

4.2.5 Distance Calculation 20

4.3 AI Virtual Mouse Coding 22

4.3.1 Hand Tracking Initialization 22

4.3.2 Hand Tracking and Gesture Recognition Loop 22

4.3.3 Moving the mouse cursor 22

4.3.4 Clicking the Mouse 22

4.3.5 Right Clicking 23

4.3.6 Taking Screenshots 23

4.3.7 Hand Presence and Closed Fist Detection 23

Chapter5

User Guide

5.1 Introduction 24

5.2 System Requirements 24

5.3 Installation 24

5.4 Getting Started 24

5.5 Hand Gestures and Actions 24

5.6 Troubleshooting 25

5.7 Conclusion 25

Chapter6

Conclusion & Future work

6.1 Limitations and Challenges 26

6.2 Future Enhancements 27

6.3 Accuracy and Precision 28

6.4 Summary of Contributions 29

6.5 Comparison between Existing and New AI-Based Screen Controller 29

6.6 Implications and Applications 30

6.7 Final Thoughts 30

Bibliography 31

LIST OF FIGURES

Figure3.1 System Overview 5

Figure3.2 Block Diagram of System 6

Figure 3.3 Flow Chart of Modules of System 6

Figure3.4 Use Case Diagram 8

Figure3.5 Hand Co-Ordinates 9

Figure 3.6 Block Diagram of gesture recognition module 10

Figure 3.8.4 Saved Screenshot 13

Figure 4.1 Mediapipe Hand Recognition Graph 16

Figure 6.3 Accuracy Graph 32

LIST OF TABLES

Table 3.5 Hand Co-Ordinates 9

Table 4.1.2 Python Packages Table 18

Chapter 1

Introduction

Chapter 1 Introduction

AI-Based Screen Controller 1

1.1 Background and Motivation

In recent years, AI-based technologies have gained significant popularity and have revolutionized

various industries and fields. One area that has seen remarkable advancements is human-computer

interaction. Traditional input devices, such as keyboards and mice, have limitations in terms of

natural and intuitive interaction. Users often require additional training to master complex

interfaces, leading to reduced productivity and user experience.

The motivation behind this research is to develop a more efficient and user-friendly screen

controller using AI and hand gestures. By leveraging computer vision and machine learning

techniques, the aim is to create a system that allows users to interact with their screens effortlessly,

mimicking natural hand movements. This would not only enhance user experience but also open up

new possibilities for applications in areas such as gaming, design, and virtual reality.

1.2 Problem Statement

The traditional input devices used for screen control have several limitations. Keyboards and

mouse, although widely used, may not provide the most intuitive and efficient interaction

experience. Users often need to memorize complex shortcuts and gestures, which can be time-

consuming and prone to errors. There is a need for a more natural and user-friendly interface that

simplifies screen control and improves overall productivity.

1.3 Objectives

The main objective of this research is to develop an AI-based screen controller using hand gestures.

The specific objectives include

 Designing and implementing a hand tracking module that accurately detects and tracks

hand movements in real-time.

 Developing algorithms to interpret hand gestures and map them to specific screen control

actions.

 Integrating the screen controller with the operating system to enable seamless interaction

with various applications and functionalities.

 Evaluating the performance and usability of the system through user studies and comparing

it with traditional input devices.

1.4 Scope of the Research

This research focuses on the development of an AI-based screen controller using hand gestures.

The scope of the research includes:

 Implementing a hand tracking module that utilizes computer vision techniques to detect and

track hand movements with high accuracy.

 Creating an interface that translates hand gestures into specific screen control actions, such

as cursor movement, clicking, scrolling, and other interactions.

 Testing and refining the system on various applications and use cases, including but not

limited to gaming, design software, and virtual reality environments.

It is important to note that this research does not cover other forms of gesture recognition or non-

hand-based input methods. The primary focus is on hand gestures and their application in screen

control.

Chapter 1 Introduction

AI-Based Screen Controller 2

1.5 Thesis Organization

This thesis is organized into the following chapters:

 Chapter 1: Introduction

• Provides an overview of the research topic and its significance

• States the problem statement and objectives

• Defines the scope of the research

• Outlines the structure of the thesis

 Chapter 2: Literature Review

• Reviews existing literature and research related to AI-based screen control and hand

gesture recognition

• Analyzes different approaches, algorithms, and technologies used in this field

• Identifies gaps and limitations in the current body of knowledge

 Chapter 3: Methodology

• Describes the methodology and approach used in developing the AI-based screen

controller

• Details the design of the hand tracking module and the algorithms for gesture

interpretation

• Explains the data collection process and the evaluation metrics used

 Chapter 4: Implementation

• Presents the implementation details of the developed system

• Describes the software architecture and the integration with the operating system

• Provides insights into the challenges faced during implementation and their solutions

 Chapter 5: Results and Evaluation

• Presents the results of the system's performance and usability evaluations

• Analyzes the findings and compares them with traditional input devices

• Discusses the strengths and limitations of the developed screen controller

 Chapter 6: Conclusion and Future Work

• Summarizes the research findings and their implications

• Discusses the contributions and achievements of the study

• Provides recommendations for future enhancements and potential research directions

The structure of this thesis ensures a comprehensive exploration of the research topic, starting with

an introduction and background and progressing through the implementation and evaluation stages.

Chapter 2

Literature Review

Chapter 2 Literature Review

AI-Based Screen Controller 3

2.1 Gesture Recognition Techniques

Gesture recognition techniques play a crucial role in the field of human-computer interaction,

enabling users to interact with computers and devices using hand gestures. There are various

techniques employed for gesture recognition, including computer vision-based and machine

learning-based approaches.

2.1.1 Computer Vision-based Gesture Recognition

Computer vision-based gesture recognition techniques utilize image processing and

computer vision algorithms to detect and interpret hand gestures. These techniques typically

involve extracting hand features, such as hand shape, position, and movement, from images

or video frames. In the presented project, the Hand Tracking module employs computer

vision techniques to detect and track hands in real-time using the Mediapipe library. It

utilizes landmark detection to identify the positions of specific hand landmarks, allowing

for gesture recognition based on hand poses and finger configurations.

2.1.2 Machine Learning-based Gesture Recognition

Machine learning-based gesture recognition techniques leverage the power of machine

learning algorithms to recognize and classify hand gestures. These techniques involve

training models on large datasets of hand gesture examples to learn patterns and

relationships between input gestures and their corresponding outputs. The trained models

can then be used to recognize and interpret new gestures. While the presented project

focuses on computer vision-based techniques, machine learning algorithms can be

integrated to enhance gesture recognition capabilities by training models to recognize

specific hand gestures with high accuracy.

2.2 AI-based Human-Computer Interaction

AI-based human-computer interaction refers to the application of artificial intelligence techniques

in enhancing the interaction between humans and computers. In the context of the project, the

integration of hand tracking and gesture recognition with an AI virtual mouse allows users to

control the mouse cursor on the screen using hand movements and gestures. This AI-powered

interaction enables a more intuitive and natural way of interacting with computers, offering users

greater flexibility and convenience.

2.3 Hand Tracking and Detection

Hand tracking and detection form the foundation of the presented project. The Hand Tracking

module utilizes computer vision techniques and the Mediapipe library to detect and track hands in

real-time video frames. It extracts hand landmarks and calculates their positions, allowing for

precise tracking and analysis of hand movements and gestures. The module employs a hand

detection model and hand landmark models provided by Mediapipe, enabling accurate and robust

hand tracking capabilities.

Chapter 2 Literature Review

AI-Based Screen Controller 4

2.4 Hand Gesture Recognition Systems

Hand gesture recognition systems are designed to interpret and recognize specific hand gestures

performed by users. These systems utilize various techniques, such as computer vision, machine

learning, or a combination of both, to analyze hand movements, hand configurations, and finger

poses. The presented project implements hand gesture recognition by analyzing the positions of

hand landmarks and the configuration of fingers. It recognizes gestures such as moving the mouse

cursor, clicking, right-clicking, and taking screenshots based on the detected finger states and hand

poses.

2.5 Summary

In summary, this literature review explored gesture recognition techniques, focusing on computer

vision-based and machine learning-based approaches. It discussed the role of AI in human-

computer interaction and the importance of hand tracking and detection in enabling gesture

recognition. The review also highlighted the significance of hand gesture recognition systems in

facilitating natural and intuitive user interactions with computers. The presented project leverages

computer vision techniques, hand tracking, and gesture recognition to create an AI virtual mouse,

enabling users to control the mouse cursor using hand gestures.

Chapter 3

System Architecture and Methodology

Chapter 3 System Architecture and Methodology

AI-Based Virtual Mouse

5

3.1 System Overview

The AI-based screen controller using hand gestures is designed to enable intuitive screen control

through the recognition of hand movements and gestures. The system comprises several key

components, including data collection and preprocessing, hand tracking module, gesture

recognition module, and AI-based screen control algorithms. These components work together to

process input hand gestures and perform corresponding screen control actions.

 Fig 3.1: System Overview

Chapter 3 System Architecture and Methodology

AI-Based Virtual Mouse

6

3.2 Block Diagram of system

3.3 Flow chart of Modules of System

Fig 3.3: Flow chart

Fig 3.2: Block diagram of system

Chapter 3 System Architecture and Methodology

AI-Based Virtual Mouse

7

An AI virtual mouse with hand gestures would likely consist of the following modules:

 Initialization:
Load AI model for hand gesture recognition

Start video capture from a camera

 Image Acquisition:

Capture a frame from the video

Pre-process the image (resize, grayscale, etc.)

 Hand Detection:
Use an object detection model to detect hands in the image

If no hands are detected, go back to step 2

 Hand Tracking:

Track the hand in subsequent frames to keep track of its movements.

Store the hand's position and movements over time

 Gesture Recognition
Use the hand's position and movements to recognize gestures.

Map the recognized gestures to specific commands (e.g. swipe left to move back a page,

swipe right to move forward)

 Screen Control:

Execute the command associated with the recognized gesture

Repeat steps 2 to 6 to continuously monitor and control the screen.

Chapter 3 System Architecture and Methodology

AI-Based Virtual Mouse

8

3.4 Use Case Diagram

Following diagram is the use case diagram of AI-Based screen controller using hand

gestures. Use Case diagram helps you to easily understand the methodology of the

system.

Fig 3.4: Use Case Diagram

Chapter 3 System Architecture and Methodology

AI-Based Virtual Mouse

9

3.5 Data Collection and Preprocessing

To train and evaluate the system, a dataset of hand gesture examples is collected and preprocessed.

The data collection process involves capturing hand movements and gestures from the user. The

collected data is then preprocessed to enhance its quality and effectiveness. This includes

techniques such as resizing images, normalizing values, and extracting relevant features from the

data.

3.6 Hand Tracking Module

The hand tracking module is responsible for detecting and tracking hand movements in real-time. It

utilizes computer vision techniques and libraries such as OpenCV and mediapipe. The module

processes input images or frames to detect the presence of hands and track their movements. The

module also extracts hand landmarks, which represent key points on the hand, such as fingertips

and joints.

Fig 3. 5: Hand Co-Ordinates Table 3. 5: Hand Co-Ordinates

Chapter 3 System Architecture and Methodology

AI-Based Virtual Mouse

10

3.7 Gesture Recognition Module

The gesture recognition module interprets the hand gestures detected by the hand tracking module

and maps them to specific screen control actions. This module utilizes the finger positions and their

configurations to recognize various gestures. The module employs machine learning techniques

such as support vector machines (SVM) or deep learning algorithms for gesture classification

3.8 AI-based Screen Control Algorithms

This section describes the AI-based screen control algorithms implemented in the system. The

algorithms utilize the hand gestures detected and recognized to perform various screen control

actions. The key modes include:

3.8.1 Moving Mode

In moving mode, the system tracks the movement of the hand and maps it to cursor

movements on the screen. The hand's coordinates are converted and used to control the

position of the mouse pointer.

 When index finger is up and all other are down = Mouse cursor moving

Fig 3.6: Block diagram of gesture recognition Module

Chapter 3 System Architecture and Methodology

AI-Based Virtual Mouse

11

3.8.2 Stop Mode

Stop mode enables the user to stop at specific position.

 When index and middle finger up = Cursor stop at that position

3.8.3 Clicking Mode

Clicking mode enables the user to perform a mouse click action using hand gestures. The

system detects when the index and middle fingers are raised and determines the distance

between them. If the distance is below a certain threshold, a mouse click action is triggered.

 When distance is smaller between index and middle finger = Left Click

Chapter 3 System Architecture and Methodology

AI-Based Virtual Mouse

12

3.8.3 Right-clicking Mode

Right-clicking mode allows the user to perform a right-click action using hand gestures. The

system detects when all four fingers are down and the thumb is raised, triggering a right-

click action.

 Thumb is raised = Right Click

3.8.4 Screenshot Mode
In screenshot mode, the user can capture a screenshot of the screen using hand gestures. By

raising the index and little fingers while keeping other fingers down, the system captures a

screenshot and saves it with a timestamp.

 Little and index finger are up = Screenshot Captured

Chapter 3 System Architecture and Methodology

AI-Based Virtual Mouse

13

3.9 Summary

In this chapter, we presented the system architecture and methodology of the AI-based screen

controller using hand gestures. The system comprises several components, including data collection

and preprocessing, hand tracking module, gesture recognition module, and AI-based screen control

algorithms. The UML class diagrams provided a visual representation of the internal structure and

functionality of the hand tracking and gesture recognition modules. The AI-based screen control

algorithms enable intuitive screen control by interpreting hand gestures and performing

corresponding actions. The next chapter will focus on the implementation and evaluation of the

system.

Fig 3.8.4 Saved screenshot

Chapter 4

System Development & Implementation

Chapter 4 System Development & Implementation

AI-Based Screen Controller 14

4.1 Tools and Language

 Python 3.7 :

Python programming language was the primary language used for developing the hand

tracking mouse control system. Python offers simplicity, readability, and a vast array of

libraries that make it suitable for computer vision and machine learning tasks.

 PyCharm:

PyCharm is an integrated development environment (IDE) specifically designed for

Python development. It provides features like code editing, debugging, and version

control, which streamline the development process.

PyCharm environment

Python 3.7 as an interpreter

Chapter 4 System Development & Implementation

AI-Based Screen Controller 15

 OpenCV:

OpenCV (Open Source Computer Vision Library) is a popular open-source computer

vision library used for image and video processing tasks. It provides various functions

and algorithms for handling images, videos, and webcam inputs. In this project, OpenCV

was used for video capture, image processing, and rendering.

 Mediapipe:

Mediapipe is a framework developed by Google that provides a comprehensive set of

tools and algorithms for building applications involving real-time perception. The Hand

Tracking Module used in your project is part of the Mediapipe library. It offers pre-

trained models for hand detection and tracking, making it easy to extract hand landmarks

and gestures.

 Autopy:

Autopy is a cross-platform library that allows interaction with the mouse, keyboard, and

screen. It provides functionalities to control mouse movements, clicks, and keyboard

inputs. In your project, Autopy was utilized for moving the mouse cursor and performing

mouse clicks based on hand gestures.

 Numpy:

Numpy is a fundamental library for numerical computing in Python. It provides support

for large, multi-dimensional arrays and matrices, along with a collection of mathematical

functions. Numpy was used in your project for various mathematical calculations and

array manipulations.

g. pyttsx3: pyttsx3 is a Python library that provides a simple interface for text-to-speech

synthesis. It enables the system to speak out messages or notifications. In your project,

pyttsx3 was employed to generate audio notifications when capturing screenshots or

performing specific hand gestures.

Chapter 4 System Development & Implementation

AI-Based Screen Controller 16

4.1.1 Libraries and their Purposes:

 OpenCV:

Used for video capture, image processing, and rendering. It provides essential

functions for handling image data, such as color space conversions, filtering,

and drawing.

 Mediapipe:

Integrated the Hand Tracking Module from Mediapipe, which offers pre-

trained models for hand detection and tracking. It allows the extraction of

hand landmarks and the ability to recognize hand gestures.

 Fig: mediapipe hand recognition graph

Chapter 4 System Development & Implementation

AI-Based Screen Controller 17

 Autopy:

 Utilized Autopy library to control mouse movements and perform mouse

clicks based on hand gestures. It provides an interface to interact with the

mouse, keyboard, and screen.

 Numpy:

Utilized Numpy for mathematical calculations, array manipulation, and

handling multi-dimensional arrays. It simplifies complex mathematical

operations in Python.

 pyttsx3:

Incorporated pyttsx3 library for text-to-speech synthesis, allowing the system

to generate audio notifications or messages. It converts text-based messages

into audible speech.

The combination of these tools, languages, and libraries enabled the development of an efficient

hand tracking mouse control system. The integration of OpenCV and Mediapipe provided robust

hand detection and tracking capabilities, while Autopy facilitated precise mouse control based

on hand gestures. Numpy was instrumental in performing mathematical calculations, and

pyttsx3 added audio notifications to enhance the user experience.

Chapter 4 System Development & Implementation

AI-Based Screen Controller 18

4.1.2 Python Packages table

Chapter 4 System Development & Implementation

AI-Based Screen Controller 19

All of these are the list of packages used in this project, here I also specify their latest versions

and which version I used in this project.

Chapter 4 System Development & Implementation

AI-Based Screen Controller 20

4.2 Hand Tracking Module

4.2.1 Code Overview

The Hand Tracking module is a crucial component of the project that enables the

detection, tracking, and analysis of hand movements. It consists of a class called

handDetector that encapsulates the functionality related to hand detection and tracking.

The code is implemented using the OpenCV and Mediapipe libraries.

The handDetector class is initialized with parameters such as mode, maxHands,

detectionCon, and trackCon, which control the behavior of the hand tracking algorithm.

The mpHands and mpDraw objects are used from the Mediapipe library for hand

tracking and landmark visualization, respectively. Additionally, the tipIds list is defined

to identify specific landmarks on the hand.

4.2.2 Hand Detection and Tracking

In the findHands method of the handDetector class, the input image is processed to

detect and track hands using the hands.process function. The processed results are then

used to draw landmarks on the image if the hands are detected. The draw_landmarks

function from mpDraw is employed for this purpose. The method returns the image with

the drawn landmarks.

4.2.3 Landmark Detection and Visualization

The findPosition method in the handDetector class is responsible for extracting the

positions of landmarks on the hand. It takes the processed image as input and retrieves

the landmarks' coordinates by iterating through the landmark attribute of the detected

hand. The x and y coordinates are normalized and converted to pixel values based on the

image dimensions. These coordinates are stored in the lmList list.

Additionally, the method calculates the bounding box (bbox) that encompasses the hand

by finding the minimum and maximum x and y values from the landmark coordinates.

The bounding box is visualized on the image using the rectangle function from

OpenCV. The method returns the lmList and the bounding box coordinates.

4.2.4 Finger Tracking and Gesture Recognition

The fingersUp method in the handDetector class determines which fingers are extended

based on the landmark positions. It compares the y-coordinate of specific landmarks

(stored in the tipIds list) to detect whether the corresponding fingers are up or down. The

method returns a list of binary values indicating the state of each finger.

4.2.5 Distance Calculation

The findDistance method in the handDetector class calculates the Euclidean distance

between two specified landmarks on the hand. It takes the indices of the two landmarks,

the image, and optional parameters for visualization (radius and line thickness). The

method retrieves the coordinates of the landmarks from the lmList and calculates the

distance using the hypot function from the math module. It also draws a line and circles

representing the landmarks on the image if the draw parameter is set to true. The method

Chapter 4 System Development & Implementation

AI-Based Screen Controller 21

returns the distance, the modified image, and the coordinates of the line and circles.

The Hand Tracking module provides essential functionality for the project, including

hand detection, landmark visualization, finger tracking, and distance calculation. These

features lay the foundation for the subsequent AI Virtual Mouse module, which utilizes

the hand tracking capabilities to enable mouse control through hand gestures.

Chapter 4 System Development & Implementation

AI-Based Screen Controller 22

4.3 Ai Virtual Mouse Coding

In the Ai Virtual Mouse section of the project, the code enables controlling the mouse cursor on

the screen using hand gestures. It utilizes the Hand Tracking module to detect and track hand

movements in real-time. The following parts describe the functionality and implementation of

different features in the code.

 4.3.1 Hand Tracking Initialization

The Hand Tracking module is initialized, setting the maximum number of hands to track,

detection and tracking confidence levels, and the Hand Tracking Module object for hand

detection and tracking.

 wCam and hCam: Width and height of the video frame from the camera.

 frameR: Frame reduction value for defining the region of interest (ROI).

 smoothening: Smoothening factor for stabilizing cursor movement.

4.3.2 Hand Tracking and Gesture Recognition Loop

The main loop continuously reads frames from the video capture, performs hand tracking,

detects hand gestures, and interacts with the mouse accordingly.

 The loop runs indefinitely until interrupted.

 Within the loop, it reads frames from the video capture and passes them to the Hand

Tracking module for detecting and tracking hands.

 The findHands function draws landmarks on the detected hands in the image.

4.3.3 Moving the Mouse Cursor

 This part checks if the index finger is up and the middle finger is down, indicating

moving mode.

 It converts the hand coordinates to screen coordinates using interpolation.

 The cursor movement is smoothened to provide a smoother user experience.

 The autopy.mouse.move function moves the mouse cursor based on the calculated

coordinates.

4.3.4 Clicking the Mouse

 This part checks if both the index and middle fingers are up, indicating clicking

mode.

 It calculates the distance between the fingertips using the findDistance function from

the Hand Tracking module.

 If the distance is short (less than 40 pixels), it simulates a mouse click using the

autopy.mouse.click function.

Chapter 4 System Development & Implementation

AI-Based Screen Controller 23

4.3.5 Right-Clicking

 This part checks if all the fingers except the thumb are down and the thumb is up,

indicating right-clicking mode.

 It simulates a right-click by pressing and releasing the right mouse button using the

autopy.mouse.toggle function.

4.3.6 Taking Screenshots

 This part checks if the index and little fingers are up, indicating screenshot mode.

 It waits for half a second to avoid accidental triggering of the screenshot action.

 The code captures a screenshot using the autopy.bitmap.capture_screen function

and saves it with a timestamp as the filename.

 Additionally, it utilizes the text-to-speech engine (pyttsx3) to speak a message

confirming that the screenshot has been saved.

4.3.7 Hand Presence and Closed Fist Detection

 This part updates the hand_closed variable based on whether all fingers are down,

indicating a closed fist.

 If the hand is not present, the hand_closed variable is reset to False.

 The image with hand landmarks and visualizations is displayed using cv2.imshow.

 The loop continues until the 'q' key is pressed.

 After the loop, the video capture is released and all OpenCV windows are closed.

.

Chapter 5

User Guide

Chapter 5 User Guide

Ai-Based Screen Controller 24

5.1 Introduction

The user guide provides detailed instructions on how to use the Hand Tracking Module for various

hand gestures and actions. This chapter will guide users through the setup, usage, and available

features of the module.

5.2 System Requirements

Before using the Hand Tracking Module, ensure that your system meets the following

requirements:

 Operating System: 64-bit operating system, x64-based processor

 Python: The module requires Python 3.7 or later.

5.3 Installation

To install the Hand Tracking Module, follow these steps:

 Open a terminal or command prompt.

 Create a new Python virtual environment (recommended).

 Activate the virtual environment.

 Install the necessary dependencies

 Download the Hand Tracking Module code

 Extract the downloaded file and navigate to the module directory.

 Run the command

 The module is now installed and ready to use.

5.4 Getting Started

To start using the Hand Tracking Module, follow these steps:

1. Ensure that your webcam is connected and functional.

2. Open a terminal or command prompt.

3. Activate the Python virtual environment (if applicable).

4. Navigate to the directory containing the Hand Tracking Module code.

5. Run the program

6. The module will start capturing video from the webcam and detecting hand gestures.

5.5 Hand Gestures and Actions

The Hand Tracking Module supports various hand gestures and actions. This section provides an

overview of each gesture and explains how to perform the associated actions.

 Moving the Mouse

Gesture: Pointing with a single finger (usually index finger).

Action: Move the hand in the air to control the mouse pointer on the screen.

Usage: Use this gesture to navigate the mouse pointer and interact with applications.

Chapter 5 User Guide

Ai-Based Screen Controller 25

 Clicking and Double-Clicking

Gesture: Show the index and middle fingers raised.

Action: Tap the thumb and index/middle finger together to perform a left-click or double-

click action.

Usage: Use this gesture to select items, activate buttons, or open files/folders with a single

or double-click.

 Right-Clicking

Gesture: Close all fingers except the thumb.

Action: Tap the thumb and fingers together to perform a right-click action.

Usage: Use this gesture to access context menus, open additional options, or perform

right-click actions.

 Taking Screenshots

Gesture: Raise the index and little fingers while keeping the other fingers closed.

Action: Hold the gesture for a short duration to capture a screenshot of the screen.

Usage: Use this gesture to capture and save screenshots of the current screen or

application.

 Zoom In and Out

Gesture: Move the hand closer to or away from the webcam.

Action: Move the hand closer to zoom in or move the hand away to zoom out.

Usage: Use this gesture to zoom in or out on the screen, adjust the zoom level, or scale

content.

5.6 Troubleshooting

If you encounter any issues or difficulties while using the Hand Tracking Module, try the

following troubleshooting steps:

 Ensure that the webcam is properly connected and functional.

 Check the system requirements to ensure compatibility.

 Make sure the Hand Tracking Module is properly installed and up to date.

 Restart the module or the computer if necessary.

 Check for any error messages or warnings in the terminal or command prompt.

 Refer to the documentation or support resources for further assistance.

5.7 Conclusion

 The Hand Tracking Module provides a powerful tool for tracking hand gestures and performing

actions using the webcam. By following this user guide, users can easily set up and utilize the

module's features for various applications. For any further questions or support, refer to the

documentation or reach out to the developer community.

Chapter 6

Conclusion and Future Work

Conclusion& Future work Chapter 6

AI-Based Screen Controller 26

6.1 Limitations and Challenges:

While the proposed system offers a promising solution for hand gesture recognition and AI-

based human-computer interaction, it is important to acknowledge the limitations and

challenges that need to be addressed:

 Occlusion issues:

One of the primary challenges faced by the system is handling occlusion. When the hand

is partially or fully occluded, such as when fingers overlap or objects obstruct the hand,

it can lead to inaccurate hand tracking and gesture recognition. To overcome this

limitation, advanced techniques such as 3D hand tracking or multi-camera setups can be

explored to improve the system's robustness in occlusion scenarios.

 Lighting conditions:

Variations in lighting conditions can significantly impact the system's performance. Low

light conditions can lead to difficulties in detecting hand landmarks accurately, while

strong backlighting can result in overexposed images, making hand tracking

challenging. To address this, adaptive algorithms that dynamically adjust the image

processing parameters based on the lighting conditions can be implemented.

Additionally, exploring techniques like infrared-based hand tracking can provide more

reliable results in diverse lighting environments.

 Complex gestures:

 Recognizing complex gestures involving multiple fingers or intricate hand movements

can be a challenging task. Certain gestures may have similar hand configurations,

making it difficult to distinguish them accurately. To overcome this, incorporating

advanced machine learning algorithms, such as deep learning models, can help capture

more complex patterns and improve gesture recognition accuracy. Additionally,

integrating temporal information by considering the sequence of hand poses over time

can enhance the system's ability to recognize dynamic gestures.

Conclusion& Future work Chapter 6

AI-Based Screen Controller 27

6.2 Future Enhancements:

To further advance the proposed system and address its limitations, the following future

enhancements can be considered:

 Advanced machine learning algorithms:

Expanding the system's capabilities by exploring and integrating advanced machine

learning techniques, such as deep learning models, can significantly improve the

accuracy and robustness of gesture recognition. These models can learn complex

patterns and representations from large-scale training data, enabling the system to

recognize a wider range of gestures accurately.

 Refinement of hand tracking module:

 Continuously refining the hand tracking module is crucial for achieving more accurate

and reliable hand tracking. Improvements can be made to handle occlusion and lighting

challenges by exploring novel algorithms that leverage multiple sensors or depth

information. Additionally, incorporating hand pose estimation techniques can provide

more detailed information about hand articulation, enabling precise tracking even in

challenging conditions.

 User customization and adaptation:

Providing options for users to calibrate the system according to their hand shape and size

can enhance the user experience and improve gesture recognition accuracy. By allowing

users to input their hand profiles or leveraging user-specific training, the system can

adapt to individual variations, ensuring personalized interaction.

 Multi-user support:

Extending the system's capabilities to support multiple users simultaneously can enable

collaborative interactions and expand its applicability in scenarios such as interactive

presentations or group activities. Techniques like multi-camera setups or advanced depth

sensing can be explored to differentiate between multiple users' hands and enable

simultaneous tracking and interaction.

 Integration of additional features:

To enhance the overall usability and flexibility of the system, integrating additional

features can be considered. For example, incorporating voice commands alongside hand

gestures can provide users with multiple interaction modalities.

Conclusion& Future work Chapter 6

AI-Based Screen Controller 28

Additionally, integrating hand gesture shortcuts for common tasks or applications can

further streamline the user experience and improve efficiency.

 Cross-platform compatibility:

Expanding the system's compatibility to various platforms and operating systems can

increase its accessibility and reach. Supporting different devices, such as smartphones,

tablets, or wearable devices, can enable users to interact with a wide range of digital

interfaces beyond traditional desktop environments. This cross-platform compatibility

can be achieved through platform-specific adaptations and optimizations.

By addressing these limitations and exploring the suggested future enhancements, the proposed

system can further improve its accuracy, usability, and adaptability, making it a more powerful

tool for AI-based human-computer interaction.

6.3 Accuracy and Precision:

One of the critical factors in assessing the effectiveness of a virtual mouse is its accuracy and precision

in tracking hand movements. The AI algorithms should be capable of accurately interpreting hand

gestures and translating them into precise cursor movements on the screen. Evaluating the system's

performance in different scenarios, such as varying lighting conditions or complex hand motions, can

provide insights into its reliability.

Conclusion& Future work Chapter 6

AI-Based Screen Controller 29

6.4 Summary of Contributions:

In this research, we developed an AI-based virtual mouse system that utilizes machine learning

algorithms to enable users to control their computer cursor using hand gestures. We designed

and implemented a deep learning model capable of accurately recognizing and interpreting hand

movements, allowing for intuitive and precise control. The system demonstrated promising

results in terms of accuracy and usability, providing a viable alternative to traditional mouse

input methods.

6.5 Comparison between Existing AI-Based Screen Controller and New AI-

Based Screen Controller:

Existing AI-Based Screen Controller:

1. Hardware Cost: The existing AI-based screen controller relies on a hardware setup that

incurs significant costs, including specialized sensors or cameras, processing units, and

other peripherals. These hardware components contribute to the overall expense of

implementing the system.

2. Limited Features: The existing controller offers a limited range of features compared to

the new AI-based screen controller. It may provide basic functionalities such as hand

detection and gesture recognition, but lacks advanced capabilities.

3. Flaw: One notable flaw in the existing controller is its termination behavior when a

keyboard input is used. This means that if the user attempts to use the keyboard while

the controller is active, it abruptly terminates the control process. This limitation restricts

the seamless integration of keyboard and controller interactions.

New AI-Based Screen Controller:

1. Cost-Effective: In contrast to the existing solution, the new AI-based screen controller

offers a cost-effective alternative. By leveraging existing computing devices such as

webcams and standard processing units, it eliminates the need for additional expensive

hardware components. This significantly reduces the implementation costs, making it

more accessible and affordable.

2. Enhanced Features: The new controller introduces a range of enhanced features that

surpass the capabilities of the existing solution. In addition to hand detection and gesture

recognition, it incorporates additional functionalities such as screenshot capture and

right-click capability. These features enhance the user experience and provide added

convenience, facilitating seamless control and interaction with the screen.

Conclusion& Future work Chapter 6

AI-Based Screen Controller 30

3. Improved Compatibility: Unlike the existing controller, the new AI-based screen

controller ensures improved compatibility with hardware components. It seamlessly

integrates with standard keyboards and mice without terminating the control process.

This enables users to freely use the keyboard while simultaneously benefiting from the

controller's functionalities, resulting in a smoother and more efficient workflow.

By considering these detailed aspects, it becomes evident that the new AI-based screen

controller surpasses the existing solution in terms of cost-effectiveness, feature set, and

compatibility with hardware components. The new controller's ability to provide advanced

features without the need for expensive hardware, while ensuring a seamless user experience

with keyboard integration, makes it a highly desirable and superior choice.

6.6 Implications and Applications:

The AI-based virtual mouse opens up a wide range of implications and applications. It can be

integrated into assistive technologies to empower individuals with disabilities, enabling them to

navigate digital interfaces and perform tasks independently. Additionally, it has the potential to

enhance virtual reality and augmented reality experiences, allowing for more natural and

immersive interactions. Moreover, it can find applications in gaming, design, and other domains

that require precise cursor control.

6.7 Final Thoughts:

The AI-based virtual mouse system presented in this research holds great promise for

revolutionizing the way we interact with computers. It offers a novel and accessible input

modality, opening up new possibilities for individuals with disabilities and providing an

alternative option for all users. By further refining the system, exploring new applications, and

addressing user feedback, we can continue to advance the field of human-computer interaction

and create more inclusive and intuitive computing experiences for everyone.

Conclusion& Future work Chapter 6

AI-Based Screen Controller 31

Bibliography:

D.-H. Liou, D. Lee, and C.-C. Hsieh, “A real time hand gesture recognition system using

motion history image,” in Proceedings of the 2010 2nd International Conference on Signal

Processing Systems, IEEE, Dalian, China, July 2010.

L. Thomas, “Virtual mouse using hand gesture,” International Research Journal of

Engineering and Technology (IRJET, vol. 5, no. 4, 2018.

S. U. Dudhane, “Cursor control system using hand gesture recognition,” IJARCCE, vol. 2, no.

5, 2013.

D. L. Quam, “Gesture recognition with a DataGlove,” IEEE Conference on Aerospace and

Electronics, vol. 2, pp. 755–760, 1990.

Katona, “A review of human–computer interaction and virtual reality research fields in

cognitive InfoCommunications,” Applied Sciences, vol. 11, no. 6, p. 2646, 2021.

	This thesis stands as a testament to the profound impact you, my loving parents and great teachers, have had on my life. Your unwavering belief in me, unwavering support, and invaluable guidance have paved the way for my success. I am truly fortunate ...
	ACKNOWLEDGMENT
	PROJECT BRIEF
	TABLE OF CONTENTS
	Contents Page No.

	LIST OF FIGURES
	LIST OF TABLES
	Chapter 3
	System Architecture and Methodology

	Chapter 2
	Literature Review

